Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Med Genet ; 60(1): 65-73, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34872991

RESUMEN

BACKGROUND: Large-scale mitochondrial DNA deletions (LMD) are a common genetic cause of mitochondrial disease and give rise to a wide range of clinical features. Lack of longitudinal data means the natural history remains unclear. This study was undertaken to describe the clinical spectrum in a large cohort of patients with paediatric disease onset. METHODS: A retrospective multicentre study was performed in patients with clinical onset <16 years of age, diagnosed and followed in seven European mitochondrial disease centres. RESULTS: A total of 80 patients were included. The average age at disease onset and at last examination was 10 and 31 years, respectively. The median time from disease onset to death was 11.5 years. Pearson syndrome was present in 21%, Kearns-Sayre syndrome spectrum disorder in 50% and progressive external ophthalmoplegia in 29% of patients. Haematological abnormalities were the hallmark of the disease in preschool children, while the most common presentations in older patients were ptosis and external ophthalmoplegia. Skeletal muscle involvement was found in 65% and exercise intolerance in 25% of the patients. Central nervous system involvement was frequent, with variable presence of ataxia (40%), cognitive involvement (36%) and stroke-like episodes (9%). Other common features were pigmentary retinopathy (46%), short stature (42%), hearing impairment (39%), cardiac disease (39%), diabetes mellitus (25%) and renal disease (19%). CONCLUSION: Our study provides new insights into the phenotypic spectrum of childhood-onset, LMD-associated syndromes. We found a wider spectrum of more prevalent multisystem involvement compared with previous studies, most likely related to a longer time of follow-up.


Asunto(s)
Síndrome de Kearns-Sayre , Enfermedades Musculares , Oftalmoplejía Externa Progresiva Crónica , Preescolar , Humanos , Niño , Anciano , ADN Mitocondrial/genética , Síndrome de Kearns-Sayre/epidemiología , Síndrome de Kearns-Sayre/genética , Oftalmoplejía Externa Progresiva Crónica/epidemiología , Oftalmoplejía Externa Progresiva Crónica/genética , Enfermedades Musculares/genética , Progresión de la Enfermedad
2.
Brain Pathol ; 32(4): e13038, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34806237

RESUMEN

Two homoplasmic variants in tRNAGlu (m.14674T>C/G) are associated with reversible infantile respiratory chain deficiency. This study sought to further characterize the expression of the individual mitochondrial respiratory chain complexes and to describe the natural history of the disease. Seven patients from four families with mitochondrial myopathy associated with the homoplasmic m.14674T>C variant were investigated. All patients underwent skeletal muscle biopsy and mtDNA sequencing. Whole-genome sequencing was performed in one family. Western blot and immunohistochemical analyses were used to characterize the expression of the individual respiratory chain complexes. Patients presented with hypotonia and feeding difficulties within the first weeks or months of life, except for one patient who first showed symptoms at 4 years of age. Histopathological findings in muscle included lipid accumulation, numerous COX-deficient fibers, and mitochondrial proliferation. Ultrastructural abnormalities included enlarged mitochondria with concentric cristae and dense mitochondrial matrix. The m.14674T>C variant in MT-TE was identified in all patients. Immunohistochemistry and immunoblotting demonstrated pronounced deficiency of the complex I subunit NDUFB8. The expression of MTCO1, a complex IV subunit, was also decreased, but not to the same extent as NDUFB8. Longitudinal follow-up data demonstrated that not all features of the disorder are entirely transient, that the disease may be progressive, and that signs and symptoms of myopathy may develop during childhood. This study sheds new light on the involvement of complex I in reversible infantile respiratory chain deficiency, it shows that the disorder may be progressive, and that myopathy can develop without an infantile episode.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa , Miopatías Mitocondriales , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/patología , ADN Mitocondrial/genética , Transporte de Electrón , Humanos , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/patología , Músculo Esquelético/patología , Mutación
3.
Neuromuscul Disord ; 31(4): 348-358, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33579567

RESUMEN

Mutations in the mitochondrial DNA polymerase gamma catalytic subunit (POLγA) compromise the stability of mitochondrial DNA (mtDNA) by leading to mutations, deletions and depletions in mtDNA. Patients with mutations in POLγA often differ remarkably in disease severity and age of onset. In this work we have studied the functional consequence of POLγA mutations in a patient with an uncommon and a very severe disease phenotype characterized by prenatal onset with intrauterine growth restriction, lactic acidosis from birth, encephalopathy, hepatopathy, myopathy, and early death. Muscle biopsy identified scattered COX-deficient muscle fibers, respiratory chain dysfunction and mtDNA depletion. We identified a novel POLγA mutation (p.His1134Tyr) in trans with the previously identified p.Thr251Ile/Pro587Leu double mutant. Biochemical characterization of the purified recombinant POLγA variants showed that the p.His1134Tyr mutation caused severe polymerase dysfunction. The p.Thr251Ile/Pro587Leu mutation caused reduced polymerase function in conditions of low dNTP concentration that mimic postmitotic tissues. Critically, when p.His1134Tyr and p.Thr251Ile/Pro587Leu were combined under these conditions, mtDNA replication was severely diminished and featured prominent stalling. Our data provide a molecular explanation for the patient´s mtDNA depletion and clinical features, particularly in tissues such as brain and muscle that have low dNTP concentration.


Asunto(s)
ADN Polimerasa gamma/genética , Encefalomiopatías Mitocondriales/genética , Mutación/genética , Replicación del ADN , ADN Mitocondrial , Humanos , Recién Nacido , Masculino , Fenotipo
4.
Eur J Paediatr Neurol ; 31: 31-37, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33596490

RESUMEN

INTRODUCTION: The phenotypic variability of NARS2 associated disease is vast, yet not thoroughly explored. We present the phenotypic and genetic features of 2 siblings with early-onset mitochondrial encephalopathy due to pathogenic variant in NARS2, along with the results from a systematic literature review. AIMS: To better delineate the phenotypic variability and natural history of NARS2 associated disease. METHODS: The clinical and radiological phenotype, along with the results from the morphological and biochemical investigations from the muscle biopsy as well as the postmortem investigations, where applicable, are presented. Genetic analysis was performed with next-generation sequencing. RESULTS: Together with these 2 patients, we have diagnosed and followed 3 Scandinavian patients with the same homozygous p. Pro214Leu variant in NARS2 who presented with phenotypic features of early-onset mitochondrial encephalopathy and variable disease course. Another 14 patients with pathogenic variants in NARS2 were identified in the literature. We found that sensorineural hearing impairment is a cardinal feature of early-onset NARS2 associated disease, either isolated or in combination with central nervous system disease. Early-onset mitochondrial encephalopathy due to NARS2 variants shared phenotypic features of Alpers or Leigh syndrome and was characterized by more severe disease course and poorer survival compared to the other NARS2 associated phenotypes. CONCLUSION: NARS2 variants present with a spectrum of clinical severity from a severe, infantile-onset, progressive disease to a mild, non-progressive disease, without strong association between the genotype and the disease outcome.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Encefalomiopatías Mitocondriales/complicaciones , Encefalomiopatías Mitocondriales/genética , Variación Biológica Poblacional , Niño , Preescolar , Femenino , Genotipo , Pérdida Auditiva Sensorineural/genética , Homocigoto , Humanos , Lactante , Masculino , Mutación , Fenotipo , Hermanos
5.
J Inherit Metab Dis ; 42(5): 898-908, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31276219

RESUMEN

Exome sequencing has recently identified mutations in the gene TANGO2 (transport and Golgi organization 2) as a cause of developmental delay associated with recurrent crises involving rhabdomyolysis, cardiac arrhythmias, and metabolic derangements. The disease is not well understood, in part as the cellular function and subcellular localization of the TANGO2 protein remain unknown. Furthermore, the clinical syndrome with its heterogeneity of symptoms, signs, and laboratory findings is still being defined. Here, we describe 11 new cases of TANGO2-related disease, confirming and further expanding the previously described clinical phenotype. Patients were homozygous or compound heterozygous for previously described exonic deletions or new frameshift, splice site, and missense mutations. All patients showed developmental delay with ataxia, dysarthria, intellectual disability, or signs of spastic diplegia. Of importance, we identify two subjects (aged 12 and 17 years) who have never experienced any overt episode of the catabolism-induced metabolic crises typical for the disease. Mitochondrial complex II activity was mildly reduced in patients investigated in association with crises but normal in other patients. In one deceased patient, post-mortem autopsy revealed heterotopic neurons in the cerebral white matter, indicating a possible role for TANGO2 in neuronal migration. Furthermore, we have addressed the subcellular localization of several alternative isoforms of TANGO2, none of which were mitochondrial but instead appeared to have a primarily cytoplasmic localization. Previously described aberrations in Golgi morphology were not observed in cultured skin fibroblasts.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/deficiencia , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Discapacidades del Desarrollo/genética , Metabolismo Energético/genética , Discapacidad Intelectual/genética , Mitocondrias/genética , Adolescente , Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Ataxia/genética , Parálisis Cerebral/genética , Niño , Preescolar , Disartria/genética , Exoma , Exones , Femenino , Humanos , Masculino , Mutación , Linaje , Fenotipo , Secuenciación del Exoma
6.
Mitochondrion ; 47: 76-81, 2019 07.
Artículo en Francés | MEDLINE | ID: mdl-31059822

RESUMEN

Prenatal onset of mitochondrial disease has been described in two cases with recessive mutations in the sideroflexin 4 gene (SFXN4). We present a third case with complex I deficiency associated with novel mutations in SFXN4. Our patient presented with intrauterine growth retardation, neonatal lactic acidosis, and developed macrocytic anemia and optic nerve hypoplasia. Muscle mitochondrial investigations revealed ultrastructural abnormalities, severe deficiency of complex I enzyme activity, and loss of subunit proteins. Whole-exome sequencing revealed bi-allelic SFXN4 mutations: a 1-base deletion, c.969delG, leading to frameshift and a premature stop codon, p.(Gln323Hisfs*20), and a stop-loss mutation in the C-terminal region, c.1012 T > C; p.(*388Glnext2), resulting in elongation of the protein by two amino acids. Expression analysis of mRNA from muscle showed loss of SFXN4 transcripts.


Asunto(s)
Proteínas de la Membrana/deficiencia , Enfermedades Mitocondriales/genética , Mutación , Adolescente , Niño , Femenino , Humanos , Proteínas de la Membrana/metabolismo , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Secuenciación del Exoma
7.
Eur J Hum Genet ; 27(2): 331-335, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30315213

RESUMEN

Mitochondrial myopathies are a heterogeneous group of disorders associated with a wide range of clinical phenotypes. We present a 16-year-old girl with a history of exercise intolerance since childhood. Acylcarnitine species suggestive of multiple acyl-CoA dehydrogenase deficiency were found in serum, however genetic analysis did not reveal variants in genes associated with this disorder. Biochemical analyses of skeletal muscle mitochondria revealed an isolated and extremely low activity of cytochrome c oxidase (COX). This finding was confirmed by enzyme histochemistry, which demonstrated an almost complete absence of fibers with normal COX activity. Whole-exome sequencing revealed a single base-pair deletion (m.8088delT) in MT-CO2, which encodes subunit 2 of COX, resulting in a premature stop codon. Restriction fragment length polymorphism-analysis confirmed mtDNA heteroplasmy with high mutant load in skeletal muscle, the only clinically affected tissue, but low levels in other investigated tissues. Single muscle fiber analysis showed segregation of the mutant genotype with respiratory chain dysfunction. Immuno-histochemical studies indicated that the truncating variant in COX2 has an inhibitory effect on the assembly of the COX holoenzyme.


Asunto(s)
Carnitina/análogos & derivados , Complejo IV de Transporte de Electrones/genética , Mutación del Sistema de Lectura , Enfermedades Mitocondriales/genética , Enfermedades Musculares/genética , Adolescente , Carnitina/sangre , Codón de Terminación , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Mitocondrias Musculares/metabolismo , Enfermedades Mitocondriales/sangre , Enfermedades Mitocondriales/patología , Enfermedades Musculares/sangre , Enfermedades Musculares/patología
8.
Orphanet J Rare Dis ; 12(1): 28, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28187749

RESUMEN

BACKGROUND: Sialic acid storage diseases are neurodegenerative disorders characterized by accumulation of sialic acid in the lysosome. These disorders are caused by mutations in SLC17A5, the gene encoding sialin, a sialic acid transporter located in the lysosomal membrane. The most common form of sialic acid storage disease is the slowly progressive Salla disease, presenting with hypotonia, ataxia, epilepsy, nystagmus and findings of cerebral and cerebellar atrophy. Hypomyelination and corpus callosum hypoplasia are typical as well. We report a 16 year-old boy with an atypically mild clinical phenotype of sialic acid storage disease characterized by psychomotor retardation and a mixture of spasticity and rigidity but no ataxia, and only weak features of hypomyelination and thinning of corpus callosum on MRI of the brain. RESULTS: The thiobarbituric acid method showed elevated levels of free sialic acid in urine and fibroblasts, indicating sialic acid storage disease. Initial Sanger sequencing of SLC17A5 coding regions did not show any pathogenic variants, although exon 9 could not be sequenced. Whole exome sequencing followed by RNA and genomic DNA analysis identified a homozygous 6040 bp insertion in intron 9 of SLC17A5 corresponding to a long interspersed element-1 retrotransposon (KF425758.1). This insertion adds two splice sites, both resulting in a frameshift which in turn creates a premature stop codon 4 bp into intron 9. CONCLUSIONS: This study describes a novel pathogenic variant in SLC17A5, namely an intronic transposal insertion, in a patient with mild biochemical and clinical phenotypes. The presence of a small fraction of normal transcript may explain the mild phenotype. This case illustrates the importance of including lysosomal sialic acid storage disease in the differential diagnosis of developmental delay with postnatal onset and hypomyelination, as well as intronic regions in the genetic investigation of inborn errors of metabolism.


Asunto(s)
Intrones/genética , Transportadores de Anión Orgánico/genética , Enfermedad por Almacenamiento de Ácido Siálico/genética , Simportadores/genética , Elementos Transponibles de ADN/genética , Exones/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Ácido N-Acetilneuramínico/metabolismo , Reacción en Cadena de la Polimerasa , Piel/citología , Secuenciación del Exoma/métodos
9.
JIMD Rep ; 33: 69-77, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27604842

RESUMEN

Isolated complex II deficiency is a rare cause of mitochondrial disease and bi-allelic mutations in SDHB have been identified in only a few patients with complex II deficiency and a progressive neurological phenotype with onset in infancy. On the other hand, heterozygous SDHB mutations are a well-known cause of familial paraganglioma/pheochromocytoma and renal cell cancer. Here, we describe two additional patients with respiratory chain deficiency due to bi-allelic SDHB mutations. The patients' clinical, neuroradiological, and biochemical phenotype is discussed according to current knowledge on complex II and SDHB deficiency and is well in line with previously described cases, thus confirming the specific neuroradiological presentation of complex II deficiency that recently has emerged. The patients' genotype revealed one novel SDHB mutation, and one SDHB mutation, which previously has been described in heterozygous form in patients with familial paraganglioma/pheochromocytoma and/or renal cell cancer. This is only the second example in the literature where one specific SDHx mutation is associated with both recessive mitochondrial disease in one patient and familial paraganglioma/pheochromocytoma in others. Due to uncertainties regarding penetrance of different heterozygous SDHB mutations, we argue that all heterozygous SDHB mutation carriers identified in relation to SDHB-related leukoencephalopathy should be referred to relevant surveillance programs for paraganglioma/pheochromocytoma and renal cell cancer. The diagnosis of complex II deficiency due to SDHB mutations therefore raises implications for genetic counselling that go beyond the recurrence risk in the family according to an autosomal recessive inheritance.

11.
Mol Genet Genomic Med ; 3(1): 59-68, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25629079

RESUMEN

Alpers syndrome is a progressive neurodegenerative disorder that presents in infancy or early childhood and is characterized by diffuse degeneration of cerebral gray matter. While mutations in POLG1, the gene encoding the gamma subunit of the mitochondrial DNA polymerase, have been associated with Alpers syndrome with liver failure (Alpers-Huttenlocher syndrome), the genetic cause of Alpers syndrome in most patients remains unidentified. With whole exome sequencing we have identified mutations in NARS2 and PARS2, the genes encoding the mitochondrial asparaginyl-and prolyl-tRNA synthetases, in two patients with Alpers syndrome. One of the patients was homozygous for a missense mutation (c.641C>T, p.P214L) in NARS2. The affected residue is predicted to be located in the stem of a loop that participates in dimer interaction. The other patient was compound heterozygous for a one base insertion (c.1130dupC, p.K378 fs*1) that creates a premature stop codon and a missense mutation (c.836C>T, p.S279L) located in a conserved motif of unknown function in PARS2. This report links for the first time mutations in these genes to human disease in general and to Alpers syndrome in particular.

12.
Mitochondrion ; 21: 33-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25615419

RESUMEN

We report clinical, metabolic, genetic and neuroradiological findings in five patients from three different families with isolated complex I deficiency. Genetic analysis revealed mutations in NDUFS1 in three patients and in NDUFV1 in two patients. Four of the mutations are novel and affect amino acid residues that either are invariant among species or conserved in their properties. The presented clinical courses are characterized by leukoencephalopathy or early death and expand the already heterogeneous phenotypic spectrum. A literature review was performed, showing that patients with mutations in NDUFS1 in general have a worse prognosis than patients with mutations in NDUFV1.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Leucoencefalopatías/patología , Enfermedades Mitocondriales/patología , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Femenino , Humanos , Lactante , Recién Nacido , Leucoencefalopatías/genética , Masculino , Enfermedades Mitocondriales/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Análisis de Supervivencia
13.
Eur J Hum Genet ; 21(5): 571-3, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22781096

RESUMEN

We report a mutation in the anticodon of the tRNA(Arg) gene (m.10437 G>A), resulting in an anticodon swap from GCU to ACU, which is the anticodon of tRNA(Trp), in a boy with mitochondrial encephalomyopathy. Enzyme histochemical analysis of muscle tissue and biochemical analysis of isolated muscle mitochondria demonstrated cytochrome c oxidase (COX) deficiency. Restriction fragment length polymorphism analysis showed that 90% of muscle and 82% of urinary epithelium mtDNA harbored the mutation. The mutation was not identified in blood, fibroblasts, hair roots, or buccal epithelial cells and it was absent in the asymptomatic mother, suggesting that it was a de novo mutation. Single-fiber PCR analysis showed that the proportion of mutated mtDNA correlated with enzyme histochemical COX deficiency. This mutation adds to the three previously described disease-causing mutations in tRNA(Arg), but it is the first mutation occurring in the anticodon of tRNA(Arg).


Asunto(s)
Encefalomiopatías Mitocondriales/genética , Músculo Esquelético/patología , Fenotipo , ARN de Transferencia de Arginina/genética , Adolescente , Anticodón/genética , Emparejamiento Base , Secuencia de Bases , Respiración de la Célula/fisiología , Deficiencia de Citocromo-c Oxidasa/genética , Técnicas Histológicas , Humanos , Masculino , Encefalomiopatías Mitocondriales/patología , Datos de Secuencia Molecular , Mutación/genética , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN , Suecia
14.
EMBO J ; 31(5): 1293-307, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22252130

RESUMEN

Respiratory chain (RC) complexes are organized into supercomplexes forming 'respirasomes'. The mechanism underlying the interdependence of individual complexes is still unclear. Here, we show in human patient cells that the presence of a truncated COX1 subunit leads to destabilization of complex IV (CIV) and other RC complexes. Surprisingly, the truncated COX1 protein is integrated into subcomplexes, the holocomplex and even into supercomplexes, which however are all unstable. Depletion of the m-AAA protease AFG3L2 increases stability of the truncated COX1 and other mitochondrially encoded proteins, whereas overexpression of wild-type AFG3L2 decreases their stability. Both full-length and truncated COX1 proteins physically interact with AFG3L2. Expression of a dominant negative AFG3L2 variant also promotes stabilization of CIV proteins as well as the assembled complex and rescues the severe phenotype in heteroplasmic cells. Our data indicate that the mechanism underlying pathogenesis in these patients is the rapid clearance of unstable respiratory complexes by quality control pathways, rather than their impaired assembly.


Asunto(s)
Proteasas ATP-Dependientes/metabolismo , Codón sin Sentido , Ciclooxigenasa 1/genética , Ciclooxigenasa 1/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Células Cultivadas , Ciclooxigenasa 1/química , Transporte de Electrón , Complejo IV de Transporte de Electrones/química , Estabilidad de Enzimas , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Multimerización de Proteína
15.
Eur J Paediatr Neurol ; 16(4): 379-89, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22237560

RESUMEN

BACKGROUND: Alpers syndrome is one of the most common phenotypes of mitochondrial disorders in early childhood and has been associated with pathogenic mutations in POLG1. AIMS: To investigate the phenotypic-genotypic correlations in Alpers syndrome and to identify potential differences among patients with Alpers syndrome with or without pathogenic POLG1 mutations. METHODS: Patients with the phenotype of Alpers syndrome who were referred to our pediatric hospital during 1984-2007 and were diagnosed with mitochondrial encephalomyopathy underwent further biochemical, morphological and genetic investigations. RESULTS: A total of 19 patients were included in the study, of whom six had pathogenic POLG1 mutations including a novel mutation (c.907 G>A, p.Gly303Arg). Complete mtDNA sequencing in the subgroup without POLG1 mutations showed 5 novel and 5 very rare mtDNA variants considered as rare polymorphisms. Compared to POLG1(-) patients, the POLG1(+) patients more frequently had seizures at onset, which often became refractory. Ataxia and stroke-like episodes were much more common, while microcephaly and spasticity were encountered almost solely in the POLG1(-) group. Hepatic and ophthalmological involvement developed in 79% and 88% of patients, respectively. Most of the patients in both groups had predominant deficiency of complex I. In addition to the major degenerative changes in the cerebral cortex, the basal ganglia, thalamus and white matter were also involved to variable extent. CONCLUSION: Alpers syndrome is a heterogeneous syndrome that should be considered in patients with early-onset progressive cortical encephalopathy regardless of liver involvement. The phenotype is different depending on the presence or absence of POLG1 mutations.


Asunto(s)
Esclerosis Cerebral Difusa de Schilder/genética , Esclerosis Cerebral Difusa de Schilder/psicología , Adolescente , Edad de Inicio , Encéfalo/patología , Cardiomiopatías/complicaciones , Niño , Preescolar , ADN/genética , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/genética , Interpretación Estadística de Datos , Esclerosis Cerebral Difusa de Schilder/patología , Oftalmopatías/complicaciones , Femenino , Estudios de Seguimiento , Genotipo , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunohistoquímica , Lactante , Discapacidad Intelectual/etiología , Hígado/metabolismo , Hígado/patología , Hepatopatías/complicaciones , Hepatopatías/patología , Masculino , Mitocondrias/metabolismo , Músculo Esquelético/patología , Mutación/genética , Neuroimagen , Fosforilación Oxidativa , Convulsiones/etiología , Caracteres Sexuales
16.
J Biol Chem ; 286(13): 11132-40, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21297166

RESUMEN

Ribonucleotide reduction provides deoxynucleotides for nuclear and mitochondrial (mt) DNA replication and DNA repair. In cycling mammalian cells the reaction is catalyzed by two proteins, R1 and R2. A third protein, p53R2, with the same function as R2, occurs in minute amounts. In quiescent cells, p53R2 replaces the absent R2. In humans, genetic inactivation of p53R2 causes early death with mtDNA depletion, especially in muscle. We found that cycling fibroblasts from a patient with a lethal mutation in p53R2 contained a normal amount of mtDNA and showed normal growth, ribonucleotide reduction, and deoxynucleoside triphosphate (dNTP) pools. However, when made quiescent by prolonged serum starvation the mutant cells strongly down-regulated ribonucleotide reduction, decreased their dCTP and dGTP pools, and virtually abolished the catabolism of dCTP in substrate cycles. mtDNA was not affected. Also, nuclear DNA synthesis and the cell cycle-regulated enzymes R2 and thymidine kinase 1 decreased strongly, but the mutant cell populations retained unexpectedly larger amounts of the two enzymes than the controls. This difference was probably due to their slightly larger fraction of S phase cells and therefore not induced by the absence of p53R2 activity. We conclude that loss of p53R2 affects ribonucleotide reduction only in resting cells and leads to a decrease of dNTP catabolism by substrate cycles that counterweigh the loss of anabolic activity. We speculate that this compensatory mechanism suffices to maintain mtDNA in fibroblasts but not in muscle cells with a larger content of mtDNA necessary for their high energy requirements.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , ADN Mitocondrial/metabolismo , Desoxirribonucleótidos/metabolismo , Fibroblastos/enzimología , Mutación Missense , Ribonucleótido Reductasas/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Reparación del ADN/fisiología , Replicación del ADN/fisiología , ADN Mitocondrial/genética , Desoxirribonucleótidos/genética , Fibroblastos/citología , Humanos , Oxidación-Reducción , Ribonucleótido Reductasas/genética , Timidina Quinasa/genética , Timidina Quinasa/metabolismo
17.
Neuromuscul Disord ; 21(2): 115-20, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21196119

RESUMEN

Myopathy with exercise intolerance and deficiency of iron-sulphur cluster proteins is caused by an intronic IVS5+382 G>C mutation in ISCU, the gene encoding the iron-sulphur cluster assembly protein (IscU). The mutation causes alternative splicing resulting in a truncated protein and severely reduced levels of IscU protein in muscle tissue. Disease manifestations include muscle fatigability, dyspnoea, cardiac palpitations and episodic myoglobinuria. Muscle tissue of these patients demonstrates marked histochemical succinate dehydrogenase deficiency and accumulation of iron in muscle fibres, which are morphological hallmarks of the disease. A biopsy specimen from a patient, two months after a severe attack of rhabdomyolysis, revealed regenerating muscle with normal succinate dehydrogenase activity and only minor iron accumulation, whereas another biopsy obtained nine years after the episode showed the typical hallmarks of the disease. The apparent explanation for the normal succinate dehydrogenase activity during regeneration was a markedly increased level of IscU protein in regenerating muscle tissue and an increase in normally spliced ISCU transcripts in the patient. The results have implications for diagnosis of the disease based on muscle biopsy findings and support the concept that an increase of normally spliced ISCU by RNA modulating therapy may be a therapeutic possibility for these patients.


Asunto(s)
Enfermedades Carenciales/metabolismo , Proteínas Hierro-Azufre/deficiencia , Enfermedades Musculares/metabolismo , Rabdomiólisis/metabolismo , Succinato Deshidrogenasa/metabolismo , Anciano , Biopsia , Enfermedades Carenciales/genética , Femenino , Humanos , Intrones/genética , Proteínas Hierro-Azufre/genética , Músculo Esquelético/patología , Enfermedades Musculares/genética , Mutación/genética , Rabdomiólisis/patología , Succinato Deshidrogenasa/deficiencia
18.
Eur J Pediatr ; 169(2): 201-5, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19526370

RESUMEN

Mitochondrial DNA depletion, encephalomyopathic form, with methylmalonic aciduria is associated with mutations in SUCLA2, the gene encoding a beta subunit of succinate-CoA ligase, where 17 patients have been reported. Mutations in SUCLG1, encoding the alpha subunit of the enzyme, have been reported in only one family, where a homozygous 2 bp deletion was associated with fatal infantile lactic acidosis. We here report a patient with a novel homozygous missense mutation in SUCLG1, whose phenotype is similar to that of patients with SUCLA2 mutations.


Asunto(s)
ADN Mitocondrial/genética , Enfermedad de Leigh/genética , Ácido Metilmalónico/orina , Encefalomiopatías Mitocondriales/genética , Mutación Missense , Succinato-CoA Ligasas/genética , Encéfalo/patología , Análisis Mutacional de ADN , Estudios de Seguimiento , Frecuencia de los Genes , Humanos , Recién Nacido , Enfermedad de Leigh/diagnóstico , Enfermedad de Leigh/metabolismo , Imagen por Resonancia Magnética , Masculino , Ácido Metilmalónico/sangre , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/metabolismo , Reacción en Cadena de la Polimerasa , Factores de Tiempo
19.
Neuromuscul Disord ; 19(12): 833-6, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19846308

RESUMEN

Iron-sulphur cluster deficiency myopathy is caused by a deep intronic mutation in ISCU resulting in inclusion of a cryptic exon in the mature mRNA. ISCU encodes the iron-sulphur cluster assembly protein IscU. Iron-sulphur clusters are essential for most basic redox transformations including the respiratory-chain function. Most patients are homozygous for the mutation with a phenotype characterized by a non-progressive myopathy with childhood onset of early fatigue, dyspnoea and palpitation on trivial exercise. A more severe phenotype with early onset of a slowly progressive severe muscle weakness, severe exercise intolerance and cardiomyopathy is caused by a missense mutation in compound with the intronic mutation. Treatment of cultured fibroblasts derived from three homozygous patients with an antisense phosphorodiamidate morpholino oligonucleotide for 48 h resulted in 100% restoration of the normal splicing pattern. The restoration was stable and after 21 days the correctly spliced mRNA still was the dominating RNA species.


Asunto(s)
Proteínas Hierro-Azufre/deficiencia , Proteínas Hierro-Azufre/genética , Enfermedades Musculares/genética , Enfermedades Musculares/terapia , Oligonucleótidos Antisentido/uso terapéutico , Secuencia de Bases , Células Cultivadas , Fibroblastos/fisiología , Humanos , Datos de Secuencia Molecular , Morfolinas/uso terapéutico , Morfolinos , Enfermedades Musculares/fisiopatología , Mutación , Empalme del ARN/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Piel/citología , Factores de Tiempo
20.
Brain ; 132(Pt 11): 3165-74, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19720722

RESUMEN

Childhood-onset mitochondrial encephalomyopathies are usually severe, relentlessly progressive conditions that have a fatal outcome. However, a puzzling infantile disorder, long known as 'benign cytochrome c oxidase deficiency myopathy' is an exception because it shows spontaneous recovery if infants survive the first months of life. Current investigations cannot distinguish those with a good prognosis from those with terminal disease, making it very difficult to decide when to continue intensive supportive care. Here we define the principal molecular basis of the disorder by identifying a maternally inherited, homoplasmic m.14674T>C mt-tRNA(Glu) mutation in 17 patients from 12 families. Our results provide functional evidence for the pathogenicity of the mutation and show that tissue-specific mechanisms downstream of tRNA(Glu) may explain the spontaneous recovery. This study provides the rationale for a simple genetic test to identify infants with mitochondrial myopathy and good prognosis.


Asunto(s)
Deficiencia de Citocromo-c Oxidasa , Encefalomiopatías Mitocondriales , Mutación Puntual , Secuencia de Bases , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/patología , Deficiencia de Citocromo-c Oxidasa/fisiopatología , Diagnóstico Diferencial , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/patología , Encefalomiopatías Mitocondriales/fisiopatología , Biología Molecular , Datos de Secuencia Molecular , Músculo Esquelético/patología , Conformación de Ácido Nucleico , Linaje , Fenotipo , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...